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ABSTRACT 

Symmetries of phonon modes active in the first and the second order Raman 

scattering for the crystal of hexagonal ice and their influence on scattered polarized light 

are presented. Also examples of the depolarization ratios for the particular modes active 

in the first and second order scattering are given. Phonons for the points: , L and M are 

from the low-energy part of the intensity spectrum. Only the translational modes of 

vibrations i.e. consisting of the displacements of the water molecules from the average 

positions on the lattice sites are considered here. 
 

 

 

1     Introduction 

 

Hexagonal ice belongs to a space group D 6
4
h  which describes the symmetry of 

arrangement of oxygen atoms. Water molecules in ice are tetrahedrally coordinated. 

They are arranged in puckered sheets perpendicular to the c-axis. The unit cell of this 

structure is a prism set on a rhombic base with inner angle 120o between the axes in the 

xy-plane. There are four molecules in a unit cell with four oxygen atoms in positions: 

(1/3, 2/3, zo), (2/3, 1/3, 1/2+zo) in units aH in the xy-plane and cH along the z-axis. The 

constant zo is closely equal to 1/16. aH and cH are lattice constants of the hexagonal ice. 

 

 

2     Vector Representation in Hexagonal Crystals 

 

Raman scattering involves the optical polarizability which transforms like bilinear 

forms of Cartesian coordinates, i.e. according to the symmetrized Kronecker square of 

vector representation [Dv  Dv]. In the space group D 6
4
h  of the uniaxial crystals of the 

hcp structure the vector representation is the direct sum of the unitary irreducible 

representations 6- (E1u) and 2- (A2u), where we write the representation labels of Miller 

and Love [1] and add those of Herzberg [2]  1  

 

Dv = 6-  2- = E1u  E2u.                                    (1) 

                                                        
1 In Ref. [3] there was written incorrectly Dv = 6+  2+, but the other results are correct. 



 

 

Table 1 gives the characters of these representations. 

 

TABLE 1: Characters of representations of group D 6
4
h   

R D
v

(R)  6(R)  2 (R) 

1 

3,5 

4 

2,6 

7,9,11 

8,10,12 

20,22,24 

19,21,23 

16 

14,18 

13 

15,17 

3 

0 

-1 

2 

-1 

-1 

1 

1 

1 

-2 

-3 

 0 

2 

-1 

-2 

1 

0 

0 

0 

0 

2 

-1 

-2 

1 

1 

1 

1 

1 

-1 

-1 

1 

1 

-1 

-1 

-1 

-1 

 

 

 

 

3     Phonons Active in the First-Order Raman Scattering 

 

Raman scattering involves the optical polarizability which transforms as the 

bilinear components x2, y2, z2, xy, xz and yz. The character RS(R) of the reducible 

representations of these transformations is related to the character (R) of the 33 

representation of the group of the rotations R by [4] 

 

RS(R) = (R) [(R)  1]                                   (2) 

 

with  +  for proper and  -  for improper rotation. Raman scattering is possible on 

phonons having unitary irreducible representation with character kl(R) such that 

 

n = 
1

N
 
R=1

N

 RS(R)kl(R)*  1                               (3) 

 

where  N  is the order of the point group of the k-wave vector group and l is the number 

of the irreducible representation of the k-wave vector group. In the space group D 6
4
h  

inspection of the characters of Table 2 enables to find the decomposition 

 

[Dv  Dv] = 21+  5+  6+                                (4) 

 

In the first-order Raman scattering therefore the 1+, 5+, 6+ phonons only are active. 

 



 

 

TABLE 2: Characters of representations of group D 6
4
h  

R RS(R) = [ D
v
 D

v
](R)  1 (R) 5 (R)  6 (R) 

1 

3,5 

4 

2,6 

7,9,11 

8,10,12 

20,22,24 

19,21,23 

16 

14,18 

13 

15,17 
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0 

2 

2 

2 

2 

2 

2 

2 

2 

6 

0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

-1 

2 

-1 

0 

0 

0 

0 

2 

-1 

2 

-1 

2 

-1 

-2 

1 

0 

0 

0 

0 

-2 

1 

2 

-1 

                                           n  = 2 1 1 

 

 

 

 

4     Phonons Active in the Second-Order Raman 

       Scattering 

 

The selection rules are simplest to calculate [5,6] for the second-order line 

spectrum, where both phonons have effectively zero wave vector, and for the part of the 

second-order continuum due to k=0 phonons. We have two cases: if the two phonons 

belong to the same branch the two-phonon state is an overtone and if they belong to 

different branches the two-phonon state is a combination. For the  combination states the 

Raman transition is allowed if the Kronecker product of the irreducible representations 

of the two phonons contains irreducible representations in common with the 

polarizability tensor. For the overtone states the symmetrized Kronecker square of the 

phonon irreducible representation must be formed to determine the selection rules. It 

should be mentioned that the symmetrized Kronecker square of every k=0 irreducible 

representation and the components of the polarizability tensor always transform by the 

identity representation. The overtones of all k=0 phonons are therefore Raman active. 

The selection rules for the second-order continuous spectrum due to the phonons 

with the non-zero wave vector are in principle calculated in exactly the same way as 

outlined above. However the phonon wave vector k now ranges over the entire Brillouin 

zone and in calculating the selection rules it is necessary to form the Kronecker products 

and the symmetrized Kronecker squares of the space group irreducible representations 

corresponding to all k-vectors. 

 

 



 

Table 3 gives calculated symmetries of the two-phonon states in the hexagonal 

ice crystal with notation of Tables XXIV and XXV of ref. 7. Ref. [7-9] include more 

details concerning symmetries of the Raman active phonon modes, the Raman tensors, 

the scattering intensity matrices. Also the depolarization of the scattered light in 

hexagonal ice is discussed. 

 

TABLE 3: Symmetries of the two-phonon states in hexagonal ice 

overtones combinations 

1+1+ 

3+3+ 









A1A1 

A3A3 

H1H1 

H2H2 

H3H3 

K1K1 

K2K2 

K3K3 

K4K4 

K5K5 

K6K6 

L1L1 

L2L2 

M1+M1+ 

M2+M2+ 

M3+M3+ 

M4+M4+ 

M1M1 

M2M2 

M3M3 

M4M4 







A1A3 

H1H2 

H1H3 

H2H3 

K1K5 

K2K6 

K3K6 

K4K5 

K1K6 

K2K5 

K3K5 

K4K6 

K5K6 

L1L2 

M1+M2+ 

M3+M4+ 

M1M2 

M3M4 

M1+M3+ 

M2+M4+ 

M1M3 

M2M4 

M1+M4+ 

M2+M3+ 

M1M4 

M2M3 

 

 

 

 

5     Depolarization of the scattered light 

 

Depolarization of light in the crystal scattering process has been considered in 

theoretical analysis of the light scattering by Loudon [8]. The depolarization ratio  is the 

quotient of the intensity of the light polarized in the scattering plane IІІ and the intensity 

of the light polarized perpendicularly to this plane I 





 = IІІ / I                                                  (5) 

 

 

Table 4 give some examples of the depolarization ratios for the particular modes 

active in the first and second order scattering. Phonons for the points: , L and M are 

from the low-energy part of the intensity spectrum. The coordinates of the wave vectors: 

k, kL and kM are 

 

 

k = ( 0, 0, 0),   kL = ( 1/aL, 0, 1/cH ),   kM = ( 1/aL, 0, 0),      (6) 

 

 

where aL = aH 3 /2  and  aH,  cH  are lattice constants. 

 

 



 

 

TABLE 4: Depolarization ratio 

Scattering 

plane 

Symmetry of 

excitation modes 

Depolarization ratio 

 

First order scattering 

xz 1+(1) a-b2ctg2sin22 /[4a2] 

xz 5+(1) tg2 tg2 

xz 5+(2) (1/4)ctg2 sin22 

xz 6+(1) tg2 ctg2 

yx 6+(1) tg2 tg2 

yx 6+(2) tg2 ctg2 

Second order scattering 

 

 

yx 

 

Ln(1)  Ln(1) 
n = 1,2;   = 1,3 

 

Mm(1)  Mm(1)    2 
m = 1,2,3,4;   = 1,3 

 

 

ctg2 [1 - (1/2)sin4]e/h2 

 

 

 

yx 

Ln(21)  Ln(22) 
n = 1,2 

 

Mm(21)  Mm(21)    3 
m = 1,2,3,4 

 

 

ctg2 (1 + sin4)e/h2 

 

 

 

In the table  is the angle between the scattering plane and the polarization 

vector of the incident light and  is the slide angle of the incident light. The a, b, e, h 

symbols are constants which we can determine from the experimental results i.e. from 

the vibrational spectrum. 

Using the Tables XXVI - XXX from [7] and performing summation over all 

fractional contributions we get in the two-phonon region that the full intensity for the xy 

polarization configuration (x for incident and y for scattered light) is proportional to  

29

2
e2  and for the zz polarization configuration is proportional to  19h2. In the one-

phonon region the full intensity for the xx or yy polarization configuration is proportional 

to  a2  and for the zz polarization configuration is proportional to  b2. 

The experimental vibrational spectrum for ice in both one-phonon and 

multiphonon regions is presented for example in reference [10]. Results of the inelastic 

neutron scattering i.e. the intensity spectra in hexagonal ice are given in [11-12]. The 

depolarization ratio is a quantity of practical importance in the interpretation of lidar 

observations [13-16]. 

 

                                                        
2 In ref. [7] the omission: Mn()  Mn() is corrected here. 
3 In ref. [7] the omission: Mn(2)  Mn(2) is corrected here. 
4 In ref. [7] we have: tg = ctg. 
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